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Abstract
HydroShare is an online collaborative system under development
to support the open sharing of hydrologic data, analytical tools,
and computer models. With HydroShare, scientists can easily dis-
cover, access, and analyze hydrologic data and thereby enhance
the production and reproducibility of hydrologic scientific results.
HydroShare also takes advantage of emerging social media func-
tionality to enable users to enhance information about and collab-
oration around hydrologic data and models.
HydroShare is being developed by an interdisciplinary collabora-
tive team of domain scientists, university software developers, and
professional software engineers from ten institutions located across
the United States. While the combination of non–co-located, di-
verse stakeholders presents communication and management chal-
lenges, the interdisciplinary nature of the team is integral to the
project’s goal of improving scientific software development and ca-
pabilities in academia.
This chapter describes the challenges faced and lessons learned
with the development of HydroShare, as well as the approach to
software development that the HydroShare team adopted on the
basis of the lessons learned. The chapter closes with recommenda-
tions for the application of modern software engineering techniques
to large, collaborative, scientific software development projects,
similar to the National Science Foundation (NSF)–funded Hy-
droShare, in order to promote the successful application of the
approach described herein by other teams for other projects.

10.1 Introduction to HydroShare
The HydroShare software development project is funded by the National

Science Foundation (NSF) through its Software Infrastructure for Sustained
Innovation program [333, 336]. Domain scientists, professional1 software en-
gineers, and academic software developers from ten academic institutions lo-
cated across the United States2 collaborate to develop HydroShare–an online,

1The term professional, as used here refers to an individual that has received formal
education on software development and has applied this knowledge in a commercial or
equivalent context.

2Brigham Young University, Caktus Group, Consortium of Universities for the Ad-
vancement of Hydrologic Science, Inc., Purdue University, Renaissance Computing Institute
(RENCI) at the University of North Carolina at Chapel Hill, Tufts University, Institute for
the Environment at the University of North Carolina at Chapel Hill, University of Texas at
Austin, University of Virginia, and Utah State University.
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collaborative system that extends the data-sharing capabilities of the Hydro-
logic Information System (HIS), which was developed by the Consortium of
Universities for the Advancement of Hydrologic Sciences, Inc. (CUAHSI) [355].
HydroShare extends the data-sharing capabilities of HIS by broadening the
classes of data that are accommodated, enabling the sharing of computer
models and model components, and incorporating social media functionality
in order to enhance communication and collaboration around hydrologic data
and models [350,351,353].

In cooperation with CUAHSI, HydroShare is being used by the National
Flood Interoperability Experiment (NFIE), which is a collaboration between
the National Weather Service, government and commercial partners, and
the academic community. NFIE is working to build a next-generation, high-
resolution, near–real-time hydrologic simulation and forecasting model for the
United States. With HydroShare, NFIE is able to better facilitate the flow
of information between the federal, state, and local entities responsible for
flood measurement, forecasting, and planning [338]. This near–real-time in-
formation also can be used by first responders during severe weather events
to navigate to people in need of assistance [339].

The HydroShare project provides an example of the application of modern
software engineering techniques to the development of scientific software. At
the project’s outset, most members of the HydroShare team did not fully
understand the difference between software development and software en-
gineering, nor were they familiar with iterative software methodology, code
refactoring, continuous integration, or test-driven development (explained in
Section 10.4.6). Much of the functionality of HydroShare–such as user inter-
face, access control, social media incorporation, metadata handling, search and
discovery, analytics, simulation, and storage capabilities–also was challenging
for the team. While many members of the team had previous experience in the
software development of hydrologic models, including models containing very
complex algorithms and data structures, none of the models that had been
developed by team members had the depth or complexity of the HydroShare
software stack, and none required distributed code development and coordi-
nation across a large team. Thus, the team quickly realized the need to apply
modern software engineering practices as part of the HydroShare experience.
At the time of this writing, four years into the project, the team is now capa-
ble of applying advanced software engineering techniques to the development
of HydroShare.

This chapter describes the approach, experience, and lessons learned when
applying modern software engineering techniques to a large scientific software
project, HydroShare. Recommendations are provided for how to integrate best
practices in modern software engineering into large, collaborative research
projects such as HydroShare. The overall intent is to support the advancement
of science and expand the use of sustainable software engineering practices in
academia. The goal is for other scientific software development teams to be
able to adopt and adapt the techniques and practices described in this chapter.
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10.2 Informing the Need for Software Engineering Best
Practices for Science

Modern scientific research relies on software. Software enables scientists
to collect data, perform analyses, run numerical and statistical models, and
visualize data. With the aid of software, scientists are able to answer key
research questions and test hypotheses that can revolutionize what is known
about the world. Life-sustaining policies, products, and techniques–such as
clinical therapies, pharmaceutical compounds, and solutions to environmental
problems–derive from software-enabled scientific research.

Software such as HydroShare that supports data collection, analysis, and
modeling is often used to accomplish research goals. Hannay, MacLeod, and
Singer [349] have noted that scientists spend as much as 40% of their time using
software. Often, existing software is ill-suited to a particular research project
or, in the case of commercial software, prohibitively expensive. The result is
that scientists often develop their own software–spending as much as 30% of
their time doing so [349]–even though few incentives exist for software devel-
opment in traditional tenure and promotion decision-making processes [352].
In other words, the time that an academic scientist spends developing soft-
ware is not rewarded or recognized as a significant, independent accomplish-
ment. Tenure and promotion, for example, are based on influential research,
a successful publication record, the acquisition of grants, and teaching–not
on whether one can author good software. Additionally, many funding agen-
cies wish to see their funds going toward time spent on traditional research
activities, not writing software.

While not incentivized, academic scientists continue to develop their own
software. However, most academic scientists are not trained in software devel-
opment or software engineering [342,345,359]. Software development courses,
typically offered by computer science departments, are not required for most
non-majors. Additionally, the training that scientists do receive from computer
science departments often is perceived as overly general or abstract, and sci-
entists may not see the relevance of such training [349]. As a result of the lack
of training in software development and software engineering, the software
that is developed by academic scientists often is not built to the development
standards of the commercial sector. Software engineering best practices, such
as documentation, versioning, and testing, may not be applied during the cre-
ation of academic scientific software. Furthermore, most academic software is
developed to suit the needs of a specific research project and thus may not
be applicable to other research projects or sustainable beyond the life of the
initial project.

The lack of training in software development and software engineering can
have dire consequences [346]. For instance, software that is developed with-
out the use of proven software engineering techniques may lead to errors in
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the code. Even minor errors influence the validity of research findings; in-
deed, in some cases, papers have been retracted from scientific journals and
careers have been ruined [357]. Paper retractions and irreproducible results
due to poor-quality software impede the advancement of science and impart
huge financial repercussions. Under the worst case scenario, programming er-
rors can lead to the loss of lives if erroneous findings result in faulty medical
technologies or misdirected policies on disaster response, to provide examples.

The detection of errors in academic software is extremely challenging, how-
ever. While manuscripts submitted for journal publication must undergo a
peer review process, the software code that is used to generate the findings
presented in manuscripts is rarely subjected to a peer review process or other
measures of quality assurance. Yet, peer review and testing of software code
are critical for the credibility of science and require software engineering best
practices.

Of significance, the risk of introducing error into scientific research through
the use of low-quality software provides a little recognized, but highly im-
pactful, incentive for the adoption of software engineering best practices in
academic scientific software development.

The HydroShare project addresses the challenges and highlights the ben-
efits of the adoption of software engineering best practices through a collab-
orative scientific software project involving a large, geographically dispersed
team of academic scientists, academic software developers, and professional
software engineers.

10.3 Challenges Faced and Lessons Learned
This section describes the challenges faced and lessons learned when ap-

plying modern software engineering best practices to a software development
project in hydrology. Modern software engineering, as used here refers to “the
application of a systematic, disciplined, quantifiable approach to the devel-
opment, operation, and maintenance of software; that is, the application of
engineering to software” [330].

10.3.1 Cultural and Technical Challenges

Early on, the HydroShare team identified several overarching culture chal-
lenges. First, the team found that it is not a tradition to use modern software
engineering best practices in the development of academic software due to a
lack of incentives and a failure to recognize the benefits, as discussed above.
The perception was that good software engineering practices are not needed
to obtain scientific results and to publish scientific papers. Second, graduate
students often develop software for their faculty advisors, yet graduate stu-
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dents have very short-term goals (i.e., graduate in the next couple of years),
so software sustainability is not a high priority. Third, graduate students and
their faculty advisors typically have not received formal training in software
development, let alone software engineering. Fourth and lastly, the rigorous
metadata requirements necessary for reproducible science make scientific soft-
ware systems more complex than other types of software and thus require
significant time to create unit tests. This presents a paradox, as the more
complex software is, the more benefit one gets from having comprehensive
unit tests.

The team also encountered more specific technical challenges. For example,
as implementation of our HydroShare project began, the team quickly real-
ized that most members were not familiar with Git, GitHub, or continuous
integration (i.e., a development practice that requires developers to integrate
code into a shared repository on a very frequent basis). The decision was
thus made to assign only members at the lead technical institution the task
of implementing initial beta release functionalities in order to expedite cre-
ation of the code infrastructure for subsequent collaborative development and
continuous integration by the broader team members. However, this limited
HydroShare beta release functionality to only those functionalities that could
be implemented by the lead technical institution. This approach did expedite
the initial release of the system, but the approach also precluded the ability
for other team members to contribute to the development. For HydroShare,
this trade-off was acceptable as the other team members used the additional
time to get versed on continuous integration, Git, GitHub, and other specific
technologies and approaches used in HydroShare software development.

Early on in the project, the team held several in-person meetings, as well
as weekly team teleconferences, that served to achieve the development objec-
tives, including the development of a data model (i.e., a conceptual model of
how data elements relate to each other) and access control policies (i.e., policies
to restrict access to data) and thorough consideration of how to accommodate
hydrologic models within HydroShare. As implementation progressed and soft-
ware engineering principles, such as code versioning (i.e., management of revi-
sions to source code) and continuous integration, were diffused from the pro-
fessional software engineers to the hydrologists, additional challenges emerged.
For example, the distributed development team experienced difficulty achiev-
ing short-release cycles of continuous integration of the Django-based system
using Git and GitHub. Django is a large, complex, open source, python-based
web development framework, in which its customization model and content
data are stored in databases [328]. Django proved to be difficult to manage via
version control by a team with members of various skill levels. Specifically, the
challenge was how to manage multiple, distributed development teams that
were simultaneously checking out their own branch3 of HydroShare, while

3A branch in GitHub lives separately from the production codebase, thus allowing for
experimentation without affecting the master branch (or production codebase).
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maintaining consistency in the back-end Django database. This led to multi-
ple, complex code feature branches being checked out and worked on at the
same time–without a sufficient number of intermediate merges.

Described below are two specific challenges–waiting too long between
code merges and establishing a development environment–examined in greater
depth, including the downstream challenges and lessons learned.

10.3.2 Waiting Too Long between Code Merges

To highlight the complications that may arise from waiting too long be-
tween code merges, this section considers a release of HydroShare in which
two key items were addressed on different branches: base class refactoring and
a change in the approach to access control. This presented a non-trivial chal-
lenge because of the intertwining of these two items, along with the need to
preserve existing resources.

The HydroShare base class refactoring branch endeavored to promote the
HydroShare Generic Resource type functionality from being abstract to fully
defined. Being able to extend upon a fully defined resource opened the door for
easier searching, indexing, and database querying that wouldn’t otherwise be
possible if the team had kept extending from the previously defined abstract
model. Once this was implemented and tested for the Generic Resource type,
the team then needed to apply this to all of the other HydroShare resource
types in close coordination with the developers that had originally created
them in order to ensure against loss of context, extended metadata, or other
resource-specific attributes.

The HydroShare access control branch endeavored to implement an access
control model that the team designed to best suit the hydrology research
community [347]. However, this uniquely designed HydroShare access control
model meant that it was necessarily non-standard and non-compliant with
basic use of Django; thus, the team took extra care in how this change was
implemented. The first, albeit incomplete, implementation of the HydroShare
access control was integrated on top of Django’s permission system for the sake
of simplicity and the need to get an initial working version of HydroShare. To
implement the full HydroShare access control, the team needed to decouple
from Django’s permission system and enforce a HydroShare-specific model,
thereby adding additional system complexity.

To further complicate things, the HydroShare access control and base class
refactoring had to be implemented on top of existing HydroShare resources
in production use. The integrated rule-oriented data system (iRODS) [334] is
used as a data management back-end to HydroShare. The challenge however,
was migrating all of the existing HydroShare resources that were in use by
users when the new resource and access control schema didn’t fit the existing
iRODS storage policies. Multiple steps and operations on the resources and
database were required to properly migrate resources into the new models and
access control schema. This proved to be quite a challenging endeavor.
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Each of these items on their own presented a significant task; however, the
summation of all of these branches into a single release required numerous dry-
runs and small intermediate tests based on the results of the dry-runs before
the team was confident that it was right. The team put as much time into
testing and validation as they did into coding the changes themselves. The
main lesson learned from this experience is that it is best to perform smaller,
but more frequent merges, rather than a large release with multiple complex
merges. With the former approach, the merge complexity will be reduced and
time will be saved.

10.3.3 Establishing a Development Environment

Another major challenge for the development team was setting up the in-
tegrated development environment for individual developers. This presented a
challenge mainly due to the many Docker containers [329] that the HydroShare
system uses, as well as the fact that most of the developers did not have knowl-
edge of Docker configuration, which was a relatively new technology at the
beginning of the HydroShare project. This challenge was resolved by scripting
the development environment, such that with few commands, the team could
quickly set up the HydroShare development environment–something that had
previously taken hours. As the development team was distributed, weekly
videoconferences were used to train new HydroShare developers on how to set
up the development environment.

The HydroShare software developers faced major challenges in code con-
tribution in the early stages of the HydroShare project due to the size of
the project and their inexperience, particularly when working in a distributed
team environment. In addition, the team didn’t have procedures in place for
how to effectively contribute code using GitHub (also discussed in Section
10.4.8), which was new to many team members. In order to solve these chal-
lenges, the team created very detailed documentation specific to the project
on how to push/pull to/from GitHub. In addition, hands-on training was pro-
vided to all software developers on best practices for using GitHub. In order
to improve code quality, the team adopted the GitHub pull request feature
for code review, whereby all code had to be code reviewed by an independent
team member prior to merging the pull request. We found these practices to
be extremely beneficial in providing the momentum to establish our software
development environment.

10.4 Adopted Approach to Software Development Based
on the Lessons Learned

This section conveys the approach to software development that was
adopted for HydroShare based on the lessons learned early on in the project.
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The approach includes the adoption of an iterative approach to software de-
velopment that incorporates best practices in modern software engineering.
Highlighted are several best practices in software engineering, including the
use of virtual machines, code versioning, code reviews, and test-driven devel-
opment. This section concludes with a discussion of the role and importance
of communication and DevOps in facilitating effective multi-institutional col-
laboration.

10.4.1 Adopting Best Practices in Modern Software
Engineering

One of the goals of the HydroShare Project is to continually adopt modern
software engineering techniques to all scientific software development efforts.
Although a scientist can author high-value software code, s/he approaches
software development as a means to an end, with the end being new research
findings. A software engineer, in contrast, approaches software development
with code quality and sustainability as primary goals–not application. To a
scientist, the research process is emphasized, and the final product is a set of
scientific findings, which should be accurate, reproducible, and generalizable.
To a software engineer, the coding process is emphasized, and the software
code is the product, which should be error-free and reusable for solving other
problems. In the same way that a scientist carefully designs a study to answer
a research question or test a hypothesis, a software engineer carefully designs
the code s/he will write to create new functionality. For example, software
engineers use design patterns, or reusable and generalizable units of code that
solve common software problems. Most scientists are not familiar with the
concept of design patterns. Instead of combining reusable, tested units of code
into new software, scientists often choose to write code from scratch in order
to address a specific research need; after that need has been met, the software
code is often tossed aside. Scientists are not as concerned about ensuring that
the code is free of bugs because the code is not the object of interest, so
code testing is not common practice. Software engineers, however, are trained
to ensure that the code is free of bugs because quality code is the object of
interest, so testing the code for accuracy is common practice.

One could argue that if scientists had lavish funding, they could hire pro-
fessional software engineers to develop higher quality code over a more expe-
ditious timeline. However, while an abundance of funding is always desirable,
this would prevent the realization of certain opportunities. For HydroShare
the involvement of hydrologists, including both graduate students and their
faculty advisors, in software coding was extremely important for several rea-
sons:

• As subject matter experts, the scientists were able to illuminate salient
uses cases.
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• As co-creators and owners of the software, the scientific community will
be more likely to adopt the software and shepherd it throughout its
lifetime.

• As graduate students, the incorporation of modern software engineering
practices into their training is imperative in order to better prepare the
next generation of hydrologists.

The key is that HydroShare should not be viewed simply as a software
artifact, but also as a project that captures human and scientific capital for the
advancement of transformative science through mature software engineering
methodology. This is an important point. A lot of new ideas and thought
processes have been created in the minds of the HydroShare team (i.e. human
capital) as a result of this project, and these need to be kept concomitant with
the software. Modern software engineering, in part, helps us achieve this.

10.4.2 Iterative Software Development

The Waterfall approach to software development emphasizes a discrete
planning phase that includes gathering all possible requirements before the
coding phase commences [340]. After a Waterfall phase is concluded, the rule-
of-thumb is that that phase should not be revisited. This type of approach
does not recognize or make allowances for the unknown and unpredictable.
In other words, the Waterfall approach does not provide flexibility regarding
changes in requirements, new needs or system uses, or changes in project focus.

Brooks [343] claims that software engineers should be open and ready to
throw out unworkable ideas. “The only question is whether to plan in ad-
vance to build a throwaway, or to promise to deliver the throwaway to cus-
tomers” [344]. When a distributed software development team endeavors to
integrate several new and existing software systems at the onset of a project,
complications can arise that preclude the ability of the team to efficiently
and/or practically overcome those challenges. This is especially true in aca-
demic software development projects that have limited time and funding and
include team members with varying levels of skill. With HydroShare, the team
was not exempt from the “throwaway principle” and indeed had to completely
discard a well-developed early version of the software due to unforeseen com-
plications with the integration of disparate software systems. This was the
result of several factors:

1. The decision to go with a seemingly appropriate technology, with much
community adoption in other circles, was flawed at the beginning and
made by a subset of the team without full consideration by the broader
team. A more inclusive decision process would have led to better artic-
ulation regarding the platform requirements and a better outcome.

2. The system that was chosen, while having widespread community adop-
tion in other circles, was one in which the team had no expertise. The
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learning curve proved to be too high for them, at least on a practical
level and given the time constraints.

3. The team’s lack of expertise was magnified when the team members that
made the decision to adopt the system left the project and a new lead
development team came onboard without any prior knowledge of the
selected technology or understanding of the previous team’s activities;
this challenge was exacerbated by lack of transition documentation to
guide the new team.

The team has since adopted a more flexible iterative approach with Hy-
droShare, one that embraces change. The conclusion is that one should expect
to throw out an early version of a software product and learn from the expe-
rience. Also, one should realize that it is so much more efficient (and easier to
accept) if this is part of the team’s plan from the start, for when planning to
throw out an early version of developed software, a team can view the experi-
ence as an exceptional opportunity to learn what works and what doesn’t from
the perspectives of software and technology integration, team communication,
meeting productivity, and process efficiency. The HydroShare team also found
it beneficial to encapsulate functionality in small, loosely coupled systems. For
example, the distributed data management system used by HydroShare can
work separately from the content management system, which can work sepa-
rately from the web applications system, and so forth. In the first iteration,
the team found that the integration of systems too tightly presents limita-
tions. Unforeseen challenges arise in every software development project; the
key is to plan for this early on and in every facet of the project–and expect
to throw away at least one early product.

10.4.3 Virtual Machines

The HydroShare team uses virtual machines (VM) in testing and produc-
tion in order to facilitate the distributed team’s concurrent prototyping and
development of the many diverse features of HydroShare. VMs can be created
and spun-up very quickly, with configurable memory, processor, disk storage,
and operating system to meet the diverse and evolving project and feature
requirements. For features that are complex and highly susceptible to error,
the HydroShare team creates a VM to test the feature. The team also creates
feature-testing VMs for contextually-related features. For example, the group
working on the search and filtering functionality has their own VM; the fed-
erated identity management group has its own VM; the user interface group
has their own VM, and so on. Git (i.e., a revision control system) and GitHub
(i.e., a hosting service for Git repositories) are used to manage and eventually
merge the work on these VMs into a production release. Generally, a given
branch of code that requires testing and feedback from the team is given its
own VM. The exception is that some Git branches–especially those for gen-
eral fixes–don’t require deployment to a VM since they don’t intertwine with
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other parts of the system and can be tested locally. Production VMs share an
allocation of fifty terabytes of project disk space and another fifty terabytes of
replicated disk space located four miles away in order to ensure fault tolerance
and disaster recovery.

10.4.4 Code Versioning

Code versioning is a must for any modern software development project,
academic or otherwise. There are several popular code versioning systems. The
HydroShare team chose Git due to its ability to support distributed develop-
ment workflows. Unlike other version control systems, Git allows developers to
clone the main code repository on their local machines and develop and exper-
iment with new code safely, in an independent environment completely sepa-
rated from the main codebase. New code can then be submitted for inclusion
into the main codebase after being reviewed and tested by other members of
the team. This enforces code review, allows for experimentation within a safety
net, and enables concurrent streams of development for a speedier process.

10.4.5 Code Reviews

With HydroShare, code reviews have opened up the reading of code and
stimulated discussion around the structure of the code–something that was not
happening before the team implemented the code review process. However,
the team took a while to acclimate to the code review process, whereby the
person who reviews the code is always different from the person who authors
the code. For HydroShare, a code review includes an evaluation of:

• How well the new units of code address the associated use case;

• Code quality, in terms of clarity, concision, lack of redundancy, and
thorough inline documentation;

• How easy the code’s functionality is to use; and

• How the code fared in unit testing (i.e., tests of individual modules
written for a particular function that together comprise a larger set of
code).

The HydroShare team has found code reviews to be beneficial for encourag-
ing discussion between scientists and software engineers around the structure
of the code. These discussions have served as a vehicle for teaching software
engineering best practices to the scientists involved in the project, particularly
graduate students who are not required to take programming classes as part
of their graduate work. In addition to these benefits, estimates suggest that
rigorous code review can remove up to 90% of errors from a software product
before any code testing is initiated [348] (code testing is discussed in next
section).

The key point is that while it is necessary to establish regular code reviews
early on, a period of acclimation should be expected.
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10.4.6 Testing and Test-Driven Development

The testing of all code prior to release is extremely important for writing
sustainable code – code that lasts over time because it has been tested for
defects and performs consistently through new releases. There are a variety of
tests that may be conducted during development, for example, unit testing,
feature testing, regression testing, etc.

Unit testing is used to verify that the code does what it is expected to do
without error. Ideally, using the software engineering concept of Test-Driven
Development (TDD) [337], the test is written before the code is written. This
forces the developer to think more carefully about the structure of the code,
consider the best ways to satisfy the expectations of the unit of code, and plan
for any error conditions before the code is written.

The HydroShare team has tied unit testing to Jenkins, which is an open
source, continuous integration tool [335]. Jenkins is used to implement con-
tinuous integration by automating runs of unit tests for both new code sub-
missions and nightly builds of the main codebase. Unit testing is beneficial
because it allows developers to test new features within the context of the
existing code prior to inclusion in the main codebase. This is done to verify
that a new feature will not cause existing tests to fail after it is integrated into
the main codebase. When many features are merged, they are tested together
in order to ensure that their interactions do not cause failures. Roughly every
two to three weeks, the development branch is merged into the production
codebase (or master branch), which is the code that runs on the publicly vis-
ible HydroShare production site [332]. In this way, new functionality is both
adequately reviewed and tested, as well as rapidly released.

While TDD provides an important model for software development, the
HydroShare team implemented a hybrid approach by authoring some unit
tests after functional HydroShare code was written. This approach was
prompted by time constraints and the fact that TDD has a steep learning
curve that may cause an initial decrease in developer productivity [356]. In-
deed, even at this writing, the HydroShare team is still acclimating to the
TDD process. Moreover, the HydroShare team does not yet use TDD for
development of user interfaces, as the integration of emulated user interface
actions, combined with all relevant user traversals of the HydroShare web
page environment, is currently a prohibitively complex development endeavor
for a project of the scale and complexity of HydroShare. Testing, combined
with thorough initial design, has been shown to result in approximately 40%
fewer defects compared to code developed with more ad-hoc testing [358]. The
HydroShare team continues to strive toward more comprehensive use of TDD.

10.4.7 Team Communication

Invariably, a new project will commence with a series of meetings. Among
the topics of those meetings should be the plan for both team communication
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and the software development infrastructure (i.e., the software and hardware
used for development). With HydroShare, the establishment of communication
protocols and development infrastructure early on in the project supported
collaboration and productivity and likely will continue to serve the team well
throughout the lifetime of the project.

For example, for weekly meetings of distributed team members, the team
employs videoconferencing software with screen sharing capability. For com-
munication outside of meetings, a team email list is used. HipChat [331], a
synchronous chat tool, was adopted as a place solely for development-centric
discussion, so as to avoid overloading subject matter experts (i.e., domain sci-
entists who do not participate in development) with extraneous information
or noise that only serves to distract from the research process. Furthermore,
the team adopted a content management system to host all documents for
the project, including meeting notes, presentations, use cases, architectural
diagrams, API documentation, policies, etc. The team also uses email lists to
disseminate community announcements (e.g., announce@hydroshare.org, sup-
port@hydroshare.org) and to allow people to obtain support for HydroShare.
To describe the project to interested parties, the team has created public-
facing web pages. Each of these activities has proven important to the success
of HydroShare.

10.4.8 DevOps

In addition to effective communication among team members, close collab-
oration is essential. Development Operations or DevOps is an industry concept
that can be defined as an approach to software development that emphasizes
the importance of collaboration between all stakeholders [327]. DevOps recog-
nizes that stakeholders (e.g., programmers, scientists) do not work in isolation.
This principle was adopted for HydroShare; software developers and domain
scientists work together, closely and continuously, in the development of the
HydroShare code. For HydroShare, a software engineer was selected to fill the
DevOps lead role because s/he must be a maestro of Git, GitHub, and coding,
and few team scientist-developers were skilled with modern software engineer-
ing techniques at the start of the project. The appointment of an experienced
software engineer as the DevOps lead allows the scientist-developers to learn
tools such as Git as they develop and contribute code. The DevOps lead fa-
cilitates this learning process by writing task automation scripts in order to
simplify and optimize code contributions in Git. With HydroShare, GitHub is
used for issue tracking in order to drive new development or track defects (i.e.
bugs). GitHub issues are also used to track the progress of code reviews, with
developers giving a simple “+1” to indicate that the code has been reviewed
and that the DevOps lead may proceed with a code merge. Task automa-
tion scripts help the DevOps lead groom the code repository and make Git’s
branching and merging processes more transparent. Together, these activities
contribute to the DevOps lead’s ability to successfully ensure continuous in-
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tegration with automated testing. DevOps thus foster team collaboration on
many levels over the course of a software development process.

10.5 Making Software Engineering More Feasible and
Easier to Integrate into One’s Research Activities

Many research projects do not have sufficient funding to support training
in software development and the fundamentals of good software engineering
[345]. Moreover, rigid or process-heavy software development approaches have
been shown to be unappealing to scientists [345]. Thus, accepted software
engineering approaches to the design, development, documentation, testing,
and review of code, for example, may not be employed by scientists. The result
is software that is not sustainable or usable by others.

In order to infuse the scientific community with good software engineering
practices, it is important to make software engineering practices more appeal-
ing to scientists. One approach to encourage the adoption of modern software
engineering practices is to emphasize the end result: software that is useful,
high quality, and sustainable [341].

Through the HydroShare project, an approach has been identified to in-
tegrate software engineering best practices into a large, distributed scientific
software development project in a manner that is feasible for scientists. Pro-
vided below are several specific recommendations for integrating software en-
gineering practices into one’s research activities.

First, an initial design specification should be completed at the very be-
ginning of a project, followed by an iterative design review for continuous re-
finement throughout the project development cycle. This software engineering
practice increases both software quality and productivity. The initial design
should be just enough to get project development going. The design should
be reviewed iteratively for continuous refinement as project development ad-
vances. The initial minimal set of specifications provides sufficient constraint
and guidance for the first iteration of software development in order to ensure
that no time is wasted in the present producing a specification that would
be changed or abandoned later (especially if one plans to “throw one away”
as covered in Section 10.4.2 herein). The design specification then evolves in
conjunction with software development to best serve its purpose of guiding
and planning software development in a most productive way. In practice, the
project team needs to ensure that team members who are contributing to the
system design communicate well with team members who are contributing to
the system development throughout the project development cycle. This is
in order to streamline the process in such a way as to produce an evolving
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design specification that is just enough to guide development of high-quality
software.

Second, iterative software releases and the release of a prototype early
in the development iteration are recommended in order to solicit feedback
from end users. The software engineering practice of iterative software re-
leases brings end users into the loop in such a way that their feedback can
be integrated into the iterative software design and development process as
early as possible, thereby ensuring the delivery of a software product with
a large user base. It would be regrettable for any software project, especially
large-scale, complex scientific projects that require several years of team devel-
opment effort, to yield an end product with very few end users. The integration
of end user feedback throughout the software development cycle via iterative
software releases can prevent such a regrettable scenario from happening by
addressing end user concerns in a timely manner. Early in the development
process, the focus should be on simple designs that best fit the daily workflow
of end users in order to ensure efficient delivery of an easy-to-use, high-quality
end product.

Last, the adoption of software engineering practices is crucial to ensure
software quality and sustainability, but these practices should be applied se-
lectively to individual projects, so as not to hinder research productivity.
Through the HydroShare experience three software engineering practices have
been identified that warrant particular consideration for making software en-
gineering more feasible and easier to integrate into one’s research activities;
namely, code refactoring, code review, and software testing. Code refactor-
ing is needed on occasion in order to make changes to the underlying data
structures and frameworks so that subsequent software development will be
based on a better foundation, thereby resulting in improvements in software
quality and development productivity. Because code refactoring can be very
disruptive and may require a great deal of effort, careful consideration must
be paid to the costs-benefits before adopting code refactoring. In certain cir-
cumstances, proof-of-concept prototyping will be needed in advance of any
decision to adopt code refactoring in order to prove that the benefits outweigh
the costs. While scientists often assume that output errors are the result of
faulty theory rather than faulty software [354], the adoption of code review
and software testing as precepts of sound software engineering in large-scale,
scientific software development projects will help to minimize output errors
and ensure that the final software product is high quality and sustainable.

10.6 Conclusion
The HydroShare project is a work in progress, and exploration, refinement,

and implementation of the topics herein are by no means finished. Rather, the
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goal is to provide readers with insight into the HydroShare experience and
lessons learned in order to minimize the learning curve and accelerate the
development progress for other teams. The goal of this chapter is to provide
readers with a basic understanding of why good software engineering for sci-
ence is tantamount to the success and sustainability of a scientific research
project and why poor software engineering will detract from research time,
with more time spent managing poorly written code than actually conducting
research. In the long run, good software engineering will foster research and
one’s research career by ensuring the validity of research findings, reducing
the amount of time needed to maintain and extend code, and improving the
ease at which new features can be adopted, thus supporting software reuse
and sustainability.
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